Clinical Applications of Al in
Radiation Oncology and Physics



Disclosures

* None, except caveats about quality:
— | am an enthusiastic amateur, not an Al researcher

— | cannot compete with YouTube, and that’s a good
thing!



What do we mean by Al?

VS
— Lines are blurry, terms often used interchangeably

— Al can be “general” or “narrow”
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The Neuron

 An artificial is an abstraction of a

Bias

Information —— | Integration] —> Decision



The Neuron

Always hungry
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—> Eat lunch!
Not lunchtime yet /,



The Neuron
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The Neuron

e Different activation models are used
— VS VS

— alters the magnitude of input necessary to
activate




The Neural Network

Input Hidden Layer Output




Training by Backpropagation
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The Neural Network

e The number of hidden layers is a design
decision

. are simply networks with a lot
of hidden layers

. can be approximated by a single
hidden layer of sufficient breadth

— No guarantee it can be determined!



Convolutional Neural Networks (CNNs)

e Computer vision includes many tasks relevant
to diagnosis and treatment
— Object classification
— Image processing
— Segmentation

e Convolution of the input images with various
filters produces feature maps

e The attached neural network learns which
combination of features are relevant



Convolutional Neural Networks (CNNs)

e CNNs are popular because:
— Convolution is embarrassingly parallel
— Synergy with computer graphics hardware

— Infrastructure exists to collect huge datasets
(phones, social media, loT)

— Training can be crowd-sourced

ANNOUNCING TESLA V100
GIANT LEAP FOR Al & HPC




How CNNs work in 5 slides...
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The convolution filter

0 0 0

0 0 0
1 0 1

0 0 0
2 0 2

0 0 0
2 0 1

0 0 0
Sobel Filter 0 0 0




Convolutional Neural Networks

0 0 0

0 0 0
1 0 1

0 0 0
2 0 2

0 0 0
2 0 1

0 0 0
Sobel Filter 0 0 0

Result of filter is the sum of the corresponding
elements of the filter and image
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Convolutional Neural Networks

Output
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Convolutional Neural Networks
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Output Image (after convolution)

Input Image



Convolutional Neural Networks




CNNs: Classification

Convolution Pooling Convolution Poaling Fully Fully Output Predictions
+ ReLU + RelU Connected Connected

Feature Extraction from Image Classification
Single depth slice
 —— “The pooling operation used in convolutional
5|16 |78 and stride 2 6|8 . . .
3| 2 B = neural networks is a big mistake and the fact
T, that it works so well is a disaster.”

George Hinton




Figure 1: Examples of sclerotic metastases as detected by the CADe candidate gen-

eration step (red mark).
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Figure 3: The proposed convolution neural network consists of two convolutional
layers, max-pooling layers. locally fully-connected layers, a DropConnect layer, and
a final 2-way softmax layer for classification. The number of filters, connections for
each layer, and the first layer of learned convolutional kernels are shown.

reject difficult false positives while preserving high sensitivities. We validate

the approach on CT images of 59 patients (49 with sclerotic metastases and 10 Detection of Sclerotic Spine Metastases via
. i Random Aggregation of Deep Convolutional Neural
normal controls). The proposed method reduces the number of FP/vol. from Network Classifications (Roth et al. 2014)

4 to 1.2, 7 to 3, and 12 to 9.5 when comparing a sensitivity rates of 60%, 70%,
and 80% respectively in testing. The Area-Under-the-Curve (AUC) is 0.834.



CNN: U-nets for segmentation
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“U-Net: Convolutional Networks for Biomedical Image Segmentation” Ronneberger et al. (Winner of the Cell Tracking Challenge at ISBI 2015)




CNN: U-nets for dose prediction
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Figure 7: Contours of the planning target volume (PTV) and organs at risk (OAR), true dose

wash, predicted dose wash, and difference map of an example patient.
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Figure 8: Example of typical dose volume histogram (DVH) comparing true dose and
predicted dose for one patient.

As a typical prediction example from the U-net model, Figure 7 shows the input contours,
true and predicted dose washes, and a difference map of the two doses for one patient. On
average, the dose difference inside the body was less than 1% of the prescription dose,
shown in Table 1. Figure 8 shows the DVH of one of the example test patients. Visually on the
DVH, one can see that the U-net tends to predict a similar PTV dose coverage with minimal

errors in the dose prediction to the OARs.

Dose Prediction with U-net: A Feasibility Study for Predicting
Dose Distributions from Contours using Deep Learning on Prostate IMRT Patients (Nguyen et

al. 2017)



NPC target segmentation
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FIGURE 1 | Overall framework of the proposead algonthm.

TABLE 1 | Dice similarity coefficient (DSC) and Hausdorff distance for
nasophanynx gross tumor volume (GTV), metastatic lymph node gross tumar

volume (GTVind), and cinical target volume (CTV). Deep Deconvolution Neural Network for

Target Segmentatino of Nasopharyngeal
Cancer in Planning Computed

DSC (%) Hausdorff distance

{mm)

Region of interest CTV GTVnx GTVnd CTV GTVnx GTVnd

Decp docomvouionsl 826 809 623 69 51 258 Tomographi Images. Men et al. 2017
neural network
VGG-16 73.7 723 33.7 114 7. 51.6
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FIGURE 2 | The detailed architecture of deep deconvalutional neural

network.



Implementations

A number of frameworks are available

— . Caffe, , Keras

Python based systems are easier to get
started with

Matlab has a Caffe interface

Pigeons!

Pigeons (Columba livia) as Trainable
Observers of Pathology and Radiology Breast
Cancer Images. Levenson et al. 2015




Bayesian Networks

e Bayesian networks are
graphs that encode the

 They are not neural £\
networks but can be used  “without an opinion, you're just

for infe rence another person with data”

-Something | believe the Rev. Bayes might have said

* Graph structure is critical
and set out in advance



Bayesian Networks
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Bayes nets can be used to simplify causal systems when
conditional independence exists (or can be reasonably

approximated)



Bayesian Networks

Bayesian networks can be trained to encode the
probability of various system states

The conditional probabilities of each node are
updated based the frequency that that state
exists in the training data

Unlike neural networks, a priori beliefs can be
encoded to make them more robust to error

Used for post-cancer survivorship models, kidney
transplant decision-making, and regional lymph
node status



Bayes’ Net for prostate brachytherapy planning

* |nsertion of radioactive I-125
seeds into prostate via
transperineal needles

* Planning challenge is to find
the distribution of seeds that
adequately treats the prostate
with maximal simplicity

e Bayes net was trained on the
distribution of 145 past

patients, encoding the most
common needle distributions.

Sagittal




The SOURCE Network

In SOURCE, the placement likelihood of each
needle is represented by a node...

...informed by
a set of .\
contour

attributes

(evidence)

@ BC Cancer Agency

CARE + RESEARCH

An agency of the Provincial Health Services Authority

* For simplicity, not all dependencies may be illustrated



Bayesian Network in SOURCE

In SOURCE, the placement likelihood of each
needle is represented by a node...

/
@, | @,
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..with a S
e 090000 0000
by a set of . .. . ...
contour '

attributes... . . . . . .

... and the existence of other needles in the
proposed plan (at any iteration)

@ BC Cancer Agency

CARE + RESEARCH * T . .
i agencyof the rovicial Healh Serices Authorty For simplicity, not all dependencies may be illustrated



Varian RapidPlan™
e First clinical implementation of “Knowledge based
radiotherapy planning”

e Predicts achievable dose parameters based on features
and trade-offs in past cases

 Not really “Al” — does not learn best representation

Planl - Unapproved - Transversal - CT_07Aug2018
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Fic. 1. (a) Sagittal CT image of a prostate plan shewing the contours of PTV, bladder and rectom overlaid with isodose ines. (b) Coronal CT image of a HIV
plan showing the contours of PTV, left and right parotids overlaid with isodose lines. (¢) and (d) Scatter plots of the comrelation betwesn dose and distance to
PTV surface by the Euchidesn distance metric and the non-Eoclidean distancs metre for the voxels inside () bladder in the prostate plan and (d) oght parotid in
the HIN plan. Note the spread of dose-distance correlation is reduced by the non-Eonclidesn distance metric.

Quantitative analysis of the factors which affect the interpatient
organ-at-risk dose sparing variation in IMRT plans. Yuan et al. 2012
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Thanks for coming!

* Many elements of this talk were plundered
from other, better tutorials on deep learning.
It’s hard to compete with YouTube these days!

e |If you want to get started there are many
excellent and interactive Python / PyTorch
tutorials

 Happy to answer questions, and can provide
references by email.



Logistic regression as a Neural Network

Neural Network
single hidden layer, identity activation f(x) = x
single output node, logistic sigmoid activation f(x) =1/ (1 +e™)

Logistic Regression
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https://jamesmccaffrey.wordpress.com/2017/07/01/a-neural-network-
equivalent-to-logistic-regression/
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